10.4a Ellipses

Ellipse – is a set of points P in a plane such that the sum of the distances from P to two fixed points F_1 and F_2 is a given constant k.

Ellipse - Created by two foci (focus). The distances from the focus to the same point on the ellipse is constant.

$$PF_1 + PF_2 = k$$
, where $k > F_1F_2$

Major Axis - Longer segment. Foci are on it.

Minor Axis - Smaller segment. Perpendicular to the major axis.

Vertices - Endpoints of the major axis

Co-vertices - Endpoints of the minor axis.

The planets follow elliptical, not circular, orbits around the sun

Page 1

HORIZONTAL ELLIPSE:
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2}$$
 (standard form).

Center: (h, K)

Vertices: $(\pm a, 0)$

Major Axis: horizontal

Co-Vertices: $(0, \pm b)$

Minor axis: vertical.

Foci: (±0.0)

$$C^2 = a^2 - b^2$$

Page 2

VERTICAL ELLIPSE: $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2}$ (standard form).

Center: (h, k)Vertices: $(0, \pm a)$ Major Axis: Yertical Co-Vertices: $(\pm b, 0)$

Minor axis: horizontal
Foci: (0, ±c)

Write the equation of the ellipse in standard form.

Vertices at (0, 5) and (0, -5), co-vertices at (2, 0) and (-2, 0) and the center at the origin.

Vertical
$$a = 5 \quad a^2 = 25$$

$$b = 2 \quad b^2 = 4$$

$$center (0,0)$$

$$\frac{\chi^2}{4} + \frac{y^2}{25} = |$$

Page 3

Write the equation of the ellipse in standard form.

Vertex at (-4, 0) and co-vertex at (0, 3) and the center at the origin.

$$a = 4 \quad a^2 = 1k$$

 $b = 3 \quad b^2 = 9$

$$a = 4$$
 $a^2 = 16$ $\frac{\chi^2}{16} + \frac{\chi^2}{4} = 1$

horizontal

center (0.0)

Find an equation of an ellipse centered at the origin that is 12 units wide and 30 units high.

wertical major axis
$$30 = 2a$$

 $15 = a$; $a^2 = 225$

minor axis horizontal
$$17 = 2b$$

 $6 = b$; $b^2 = 36$

$$\frac{\chi^2}{36} + \frac{y^2}{225} = 1$$

Page 5

Find an equation of an ellipse centered at the origin that is 20 units wide and 10 units high.

$$a = 10$$

$$\frac{\chi^2}{100} + \frac{y^2}{25} = 1$$

$$2b = 10$$

 $b = 5$
 $b^2 = 25$

Foci of an ellipse are on the major axis

Foci are c units from the center

Use $c^2 = a^2 - b^2$ to find the foci.

The sun is at a focus, not at the center of Earth's orbit around the sun.

Page 6

Find the foci for the equation, then graph.

$$\frac{x^2}{9} + \frac{y^2}{25} = 1$$
 $C^2 = a^2 - b^2$
 $C^2 = 25 - 9$
 $C^2 = 1b$ $C = \pm 4$

$$\frac{x^{2}}{9} + \frac{y^{2}}{25} = 1 \qquad C^{2} = a^{2} - b^{2}$$

$$C^{2} = 25 - 9$$

$$C^{2} = 1 \qquad C^{2} = 49 - 16$$

$$C^{2} = 1 \qquad C^{2} = 33 \qquad C = \sqrt{3}$$

Write an equation of the ellipse with foci at $(0, \pm \sqrt{17})$ and co-vertices at $(\pm 8, 0)$.

ces at (±8, 0).

$$\begin{array}{c}
C^{2} = a^{2} - b^{2} \\
|7 = a^{2} - 64| \\
\frac{X^{2}}{64} + \frac{y^{2}}{81} = | + 64| + 64 \\
81 = a^{2}
\end{array}$$

Page 10

Write an equation of the ellipse with foci at (0, ±4) and co-vertices at $(\pm 2, 0)$

$$\frac{b=2}{b^2=4} \frac{\chi^2}{4} + \frac{u^2}{20} = 1 \qquad C^2 = a^2 - b^2 U = a^2 - 4 U = a^2 - 4$$

$$C^{2} = a^{2} - b^{2}$$

 $4^{2} = a^{2} - 4$
 $16 = a^{2} - 4$
 $10 = a^{2}$

homework: page 559 # 2-38 even, 44, 46, 50, 52, 54

Page 9