1-5

Observational and Experimental Studies

Objective 6. Explain the difference between an observational and an experimental study.

There are several different ways to classify statistical studies. This section explains two types of studies: *observational studies* and *experimental studies*.

In an **observational study**, the researcher merely observes what is happening or what has happened in the past and tries to draw conclusions based on these observations.

For example, data from the Motorcycle Industry Council (*USA Today*, May 7, 1999) stated that "Motorcycle owners are getting older and richer." Data were collected on the ages and incomes of motorcycle owners for the years 1980 and 1998 and then compared. The findings showed considerable differences in the ages and incomes of motorcycle owners for the two years.

In this study, the researcher merely observed what had happened to the motorcycle owners over a period of time. There was no type of research intervention.

In an **experimental study**, the researcher manipulates one of the variables and tries to determine how the manipulation influences other variables.

For example, a study conducted at Virginia Polytechnic Institute and presented in *Psychology Today* divided female undergraduate students into two groups and had the students perform as many sit-ups as possible in 90 seconds. The first group was told only to "Do your best," while the second group was told to try to increase the actual number of situps they did each day by 10%. After four days, the subjects in the group that were given the vague instructions, "Do your best," averaged 43 sit-ups, while the group that was given the more specific instructions to increase the number of sit-ups by 10% averaged 56 sit-ups by the last day's session. The conclusion then was that athletes who were given specific goals perform better than those who were not given specific goals.

This study is an example of a statistical experiment since the researchers intervened in the study by manipulating one of the variables, namely, the type of instructions given to each group.

In a true experimental study, the subjects should be assigned to groups randomly. Also, the treatments should be assigned to the groups at random. In the sit-up study, the article did not mention whether the subjects were randomly assigned to the groups.

Sometimes when random assignment is not possible, researchers use intact groups. These types of studies are done quite often in education where already intact groups are available in the form of existing classrooms. When these groups are used, the study is said to be a **quasi-experimental study**. The treatments, though, should be assigned at random. Most articles do not state whether random assignment of subjects was used.

Statistical studies usually include one or more *independent variables* and one *dependent variable*.

The **independent variable** in an experimental study is the one that is being manipulated by the researcher. The independent variable is also called the **explanatory variable**. The resultant variable is called the **dependent variable** or the **outcome variable**.

The outcome variable is the variable that is studied to see if it has changed significantly due to the manipulation of the independent variable. For example, in the sit-up study, the researchers gave the groups two different types of instructions, general and specific. Hence, the independent variable is the type of instruction. The dependent variable, then, is the resultant variable, that is, the number of sit-ups each group was able to perform after four days of exercise. If the differences in the dependent or outcome variable are large and other factors are equal, these differences can be attributed to the manipulation of the independent variable. In this case, specific instructions were shown to increase athletic performance.

In the sit-up study, there were two groups. The group that received the special instruction is called the **treatment group** while the other is called the **control group**. The treatment group receives a specific treatment (in this case, instructions for improvement) while the control group does not.

Both types of statistical studies have advantages and disadvantages. Experimental studies have the advantage that the researcher can decide how to select subjects and how to assign them to specific groups. The researcher can also control or manipulate the independent variable. For example, in studies that require the subjects to consume a certain amount of medicine each day, the researcher can determine the precise dosages and, if necessary, vary the dosage for the groups.

There are several disadvantages to experimental studies. First, they may occur in unnatural settings, such as laboratories, special classrooms, etc. This can lead to several problems. One such problem is that the results might not apply to the natural setting. The age-old question then is, "This mouthwash may kill 10,000 germs in a test tube, but how many germs will it kill in my mouth?"

Another disadvantage with an experimental study is the so-called **"Hawthorne effect."** This effect was discovered in 1924 in a study of workers at the Hawthorne plant of the Western Electric Company. In this study, researchers found because the subjects knew they were participating in an experiment it actually changed their behavior in ways that affected the results of the study.

Another problem is called *confounding of variables*.

A **confounding variable** is one that influences the dependent or outcome variable but cannot be separated from the independent variable.

Researchers try to control most variables in a study, but this is not possible in some studies. For example, subjects who are put on an exercise program might also improve their diet unbeknownst to the researcher and perhaps improve their health in other ways not due to exercise alone.

Observational studies also have their advantages and disadvantages. One advantage of an observational study is that it usually occurs in a natural setting. For example, researchers can observe people's driving patterns on streets and highways in large cities. Another advantage of an observational study is that it can be done in situations where it would be unethical or outright dangerous to conduct an experiment. Using observational studies, researchers can study suicides, rapes, murders, etc. In addition, observational studies can be done using variables that cannot be manipulated by the researcher such as drug users versus nondrug users, right-handedness versus left-handedness, etc.

Observational studies have disadvantages, too. As mentioned previously, since the variables are not controlled by the researcher, a definite cause-and-effect situation cannot be shown since other factors may have had an effect on the results. Observational studies can be expensive and time-consuming. For example, if one wanted to study the habitat of lions in Africa, one would need a lot of time and money, and there would be a certain amount of danger involved. Finally, since the researcher may not be using his or her own measurements, the results could be subject to inaccuracies of those who collected the data. For example, if the researchers were doing a study of events that

occurred in the 1800s, they would have to rely on information and records obtained by others from a previous era. There is no way to ensure the accuracy of these records.

When reading the results of statistical studies, decide if the study was observational or experimental in nature. Then see if the conclusion follows logically, based on the nature of these studies.

No matter what type of study is conducted, two studies on the same subject sometimes have conflicting conclusions. Why might this occur? An article entitled "Bottom Line: Is It Good for You?" (*USA Weekend*, February 26–28, 1999) states that in the 1960s studies suggested that margarine was better for the heart than butter since margarine contains less saturated fat and users had lower cholesterol levels. In a 1980 study, researchers found that butter was better than margarine since margarine contained transfatty acids, which are worse for the heart than butter's saturated fat. Then in a 1998 study, researchers found that margarine was better for a person's health. Now, what is to be believed? Should one use butter or margarine?

The answer here is to take a closer look at these studies. Actually, it is not a choice between butter or margarine that counts but the type of margarine used. In the 1980s, studies showed that solid margarine contains trans-fatty acids, and scientists believe that they are worse for the heart than butter's saturated fat. In the 1998 study, liquid margarine was used. It is very low in trans-fatty acids, and hence, it is more healthful than butter because these acids have been shown to lower cholesterol. Hence, the conclusion is to use liquid margarine instead of solid margarine or butter.

Before decisions based on research studies are made, it is important to get all the facts and examine them in light of the particular situation.