5.7 Completing the Square

Review the steps for Completing the Square.

- 1. Make sure a = 1
- 2. Set equation to $ax^2 + bx = c$
- 3. Find $(b/2)^2$
- 4. Add $(b/2)^2$ to both sides of the equation
- 5. Complete the square
- 6. Take the square root of both sides
- 7. Solve both mini equations.

Solve each quadratic equation by Completing the Square

$$x^{2}-12x+5=0$$

$$\chi^{2}-12x+36=-5+36$$

$$\sqrt{(x-6)^{2}} = \sqrt{31}$$

$$x-6 = \pm \sqrt{31}$$

$$+6 +6$$

$$\chi = 6 \pm \sqrt{31}$$

Page 2

Page 1

Solve each quadratic equation by Completing the Square

$$x^{2} + 4x - 4 = 0$$

$$\chi^{2} + 4\chi + 4 = 4 + 4$$

$$\sqrt{(\chi + 2)^{2}} = \sqrt{8}$$

$$\chi + 2 = \pm 2\sqrt{2}$$

$$-2 - 2$$

$$\chi = -2 \pm 2\sqrt{2}$$

$$2\sqrt{2}$$

The method of completing the square can only be used when the coefficient of the x^2 term is 1. If the x^2 term is a different coefficient, divide every term of the equation by that coefficient to obtain the desired form. Solve each quadratic equation by Completing the Square

$$5x^{2} = 6x + 8$$

$$5x^{2} - 6x = 8$$

$$\begin{pmatrix} \frac{1}{5}x + \frac{9}{25} &= \frac{9}{5} + \frac{9}{25} \\ \frac{1}{5}x + \frac{3}{5} &= \frac{10}{5}x + \frac{3}{5} &= \frac{10}{5}x + \frac{3}{5}x + \frac{$$

Page 3 Page 4

Solve each quadratic equation by Completing the Square

$$\frac{2x^{2} + x = 6}{2}$$

$$\chi^{2} + \frac{1}{2}\chi + \frac{1}{16} = 3 + \frac{1}{16}$$

$$\sqrt{\left(\chi + \frac{1}{4}\right)^{2}} = 4\frac{49}{16}$$

$$\chi + \frac{1}{4} = 4\frac{7}{4}$$

$$-\frac{1}{4} = 4\frac{7}{4}$$

$$\chi = \frac{3}{2}, -2$$

$$\chi = \frac{3}{4}, -2$$

$$-\frac{7}{4} - \frac{1}{4} = \frac{6}{4} = -2$$

Solve each quadratic equation by Completing the Square

$$6x - 3x^{2} = -12 \qquad \frac{-3}{-3}x^{2} + \frac{6}{-3}x^{2} - \frac{12}{-3} \qquad \chi^{2} - 2x + | = 4 + |$$

$$\sqrt{(x - 1)^{2}} = \sqrt{5}$$

$$(-\frac{2}{2})^{2} = (-1)^{2} = |$$

$$X - 1 = \pm \sqrt{5}$$

$$+ | + |$$

$$X = | \pm \sqrt{5}$$

Solve each quadratic equation by Completing the Square

$$2x^{2} - 5x + 1 = 0 = X^{2} - \frac{5}{2} \times + \frac{26}{16} = \frac{-\frac{1}{2} + \frac{15}{16}}{\frac{2}{16}} = \frac{\left(-\frac{5}{2}\right)^{2} - \left(-\frac{5}{4}\right)^{2} - \frac{15}{16}}{\sqrt{\left(X - \frac{5}{4}\right)^{2} + \frac{17}{16}}} = \frac{-\frac{1}{2} + \frac{15}{16}}{\sqrt{\frac{1}{16}}} = \frac{-\frac{15}{2}}{\frac{1}{16}} + \frac{25}{16} = \frac{17}{16}$$

$$X - \frac{5}{4} = \pm \frac{\sqrt{17}}{4} + \frac{5}{4} + \frac{5}{4}$$

$$X = \frac{5 \pm \sqrt{17}}{4}$$

Rewriting a Function in Vertex form by completing the square.

Vertex form of a quadratic equation is $y = a(x - y)^2 + k$

Page 5

Page 6

Example

$$y = x^2 + 6x + 2$$
 Find $(b/2)^2 = (6/2)^2 = 3^2$
 $y = x^2 + 6x + 3^2 + 2 - 3^2$ Complete the square, add & subtract 3^2 on the right.
 $y = (x + 3)^2 + 2 - 9$ Factor the perfect square trinomial $y = (x + 3)^2 - 7$ Simplify & leave in vertex form.

Write each equation in vertex form
$$y = x^{2} - 10x - 2$$

$$y = x^{2} - 10x + 25 - 2 - 25$$

$$y = (x - 5)^{2} - 27$$

$$y = (x - 5)^{2} - 27$$

$$y = (x + \frac{5}{2})^{2} - \frac{13}{4}$$

$$y = (\frac{5}{2})^{2} - \frac{25}{4}$$

$$y = (x + \frac{5}{2})^{2} - \frac{13}{4}$$

$$\frac{3}{4} = \frac{12}{4} - \frac{25}{4}$$

Page 9

When the coefficient of the quadratic term is not 1 ($a \ne 1$), factor out the coefficient from the quadratic and linear terms. Remember that the factored coefficient is distributed to all the terms within the parentheses.

Example:
$$y = -x^2 - 2x + 3$$

 $y = -1(x^2 + 2x + \underline{\hspace{1cm}}) + 3 + (-1)(-\underline{\hspace{1cm}})$ Add $(b/2)^2$ inside parentheses & Distribute and add opposite outside
$$y = -(x^2 + 2x + 1) + 3 + 1$$

$$y = -(x + 1)^2 + 4$$

Write each equation in vertex form. $y = (2x^{2} - 8x) + 1$ $y = (2x^{2} - 8x) + 1$ $y = (-x^{2} + 4x) - 1$ $y = 2(x^{2} - 4x + 4) + 1 - 4(2)$ $y = -(x^{2} - 4x + 4) - 1 - 4(4)$ $y = 2(x - 2)^{2} + 1 - 8$ $y = -(x - 2)^{2} - 1 + 4$ $y = 2(x - 2)^{2} - 7$ $y = -(x - 2)^{2} + 3$

Page 11 Page 12