Algebra II Chapter 8 Review

In $1 \& 2$, Graph the exponential function.

1. $y=6(2.6)^{x}$

2. $y=2(0.5)^{x}$

3. Without graphing, determine whether the function $y=4(1.7)^{x} 3$. represents exponential growth or exponential decay.
4. Without graphing, determine whether the function $y=10\left(\frac{7}{8}\right)^{x}$
5. represents exponential growth or exponential decay.
6. An initial population of 910 quail increases at an annual rate of 9%. Write an exponential function to model the quail population.
7. The population of a city is decreasing at a rate of 4% per year. There are currently about 200,000 people in the city. Show Work
a. Write a function that models the population.
b. How many people will there be in 20 years?

6 6. \qquad

6b. \qquad
7. Write an exponential function $y=a b^{x}$ for a graph that includes $(2,45)$ and $(0,5)$.
8. Write an exponential function for the graph.

9. Suppose you put $\$ 4000$ into an account earning 3\% interest. Find the amount at the end of 8 years if it is compounded quarterly. Show Work
9. \qquad
10. Suppose you invest $\$ 1000$ at an annual interest rate of 7.8% compounded continuously. How much will you have in the account after 10 years? Show Work
10. \qquad
11. Suppose you invest $\$ 900$ at an annual interest rate of 5.5% compounded continuously. How much will you have in the account after 30 years? Show Work
11. \qquad
12. The half-life of a certain radioactive material is 63 hours. An initial amount of the material has a mass of 378 kg . Write an exponential function that models the decay of this material. Find how much radioactive material remains after 11 hours. Round your answer to the nearest thousandth. Show Work
12. \qquad
13. The half-life of a certain radioactive material is 39 days. An initial amount of the material has a mass of 975 kg . Write an exponential function that models the decay of this material. Find how much radioactive material remains after 6 days. Round your answer to the nearest thousandth. Show Work
13. \qquad

In $12 \& 13$, Write the equation in logarithmic form.
14. $2^{13}=8,192$
15. $125^{\frac{4}{3}}=625$
16. Write the equation $\log _{32} 8=\frac{3}{5}$ in exponential form.
14. \qquad
15. \qquad
16. \qquad

In 15-17, Evaluate the logarithm. Show Work
17. $\log _{6} 36$
18. $\log _{3} 729$
19. $\log _{4} \frac{1}{16}$

In 18, Graph the logarithmic equation.
20. $y=\log _{2} x$

In 19 \& 20, Write the expression as a single logarithm.
21. $3 \log _{3} w+6 \log _{3} x$
22. $\log _{9} 80-\log _{9} 10$
21. \qquad
22.
22. \qquad
\qquad
19.
\qquad
23. $\log _{9} \frac{m}{6}$
24. $\log _{8} 6 c^{5}$
25. Solve ${ }^{96 x}=87$. Round to the nearest ten-thousandth.

Show Work
26. Solve $16^{5 x}=51$. Round to the nearest ten-thousandth. Show Work
27. Solve $125^{9 x-2}=150$.

Show Work
28. Use the Change of Base Formula to evaluate $\log _{4} 21$.
29. Solve $\log (9 x+2)=3$. Show Work
30. Solve $\log (5 x+8)=2$. Show Work
31. Solve $3 \log 2 x=4$. Round to the nearest ten-thousandth. Show Work
32. Solve $\log 5 x+\log 7=1$. Round to the nearest hundredth if necessary.
Show Work
In 29 \& 30, Write the expression as a single natural logarithm.
33. $2 \ln 5+4 \ln b$
34. $3 \ln y-6 \ln b$
35. Solve $\operatorname{In} \mathrm{x}=0.2$
23. \qquad
24. \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
31. \qquad
32. \qquad
33. \qquad
34. \qquad
35. \qquad

Show Work
36. Solve $\ln (3 x-7)=7$. Round to the nearest thousandth.
36. \qquad

Show Work

37. Solve $\ln (4 x+4)=5$. Round to the nearest thousandth.
38.

Show Work
\qquad

In 33, Use natural logarithms to solve the equation. Round to the nearest thousandth.
38. $e^{2 x}=1.4$ Show Work
38. \qquad
39. The amount of money in an account with continuously compounded interest is given by the formula $A=P e^{r t}$, where P is the principal, r is the annual interest rate, and t is the time in years. Calculate to the nearest hundredth of a year how long it takes for an amount of money to double if interest is compounded continuously at 2.7%. Round to the nearest tenth.
Show Work
39. \qquad
40. A company with loud machinery needs to cut its sound intensity to 53% of its original level. By how many decibels would the loudness be reduced? Use the formula $L=10 \log \frac{I}{I_{0}}$. Round to the nearest hundredth. Show Work
40. \qquad

