Algebra II Chapter 8 Review

In 1 & 2, Graph the exponential function.

- **3.** Without graphing, determine whether the function $y = 4(1.7)^x$ **3.** ______ represents exponential growth or exponential decay.
- 4. Without graphing, determine whether the function $y = 10 \left(\frac{7}{8}\right)^x$ 4. ______ represents exponential growth or exponential decay.
- **5.** An initial population of 910 quail increases at an annual rate of 9%. Write an exponential function to model the quail population.
- 6. The population of a city is decreasing at a rate of 4% per year. There are currently about 200,000 people in the city. *Show Work*
 - a. Write a function that models the population. 6a. _____
 - b. How many people will there be in 20 years? **6b.**

13._____

remains after 11 hours. Round your answer to the nearest thousandth. Show Work 12._____

10.

11.

- 4
 - 9. Suppose you put \$4000 into an account earning 3% interest. Find the amount at the end of 8 years if it is
 - compounded quarterly. Show Work 9.
 - **10**. Suppose you invest \$1000 at an annual interest rate of 7.8% compounded continuously. How much will you have in the account after 10 years? Show Work

11. Suppose you invest \$900 at an annual interest rate of 5.5% compounded continuously. How much will you have in the account after 30 years? Show Work

12. The half-life of a certain radioactive material is 63 hours. An initial amount of the material has a mass of 378 kg. Write an exponential function that models the decay of this material. Find how much radioactive material

13. The half-life of a certain radioactive material is 39 days. An initial amount of the material has a mass of 975 kg. Write an exponential function that models the decay of this material. Find how much radioactive material remains after 6 days. Round your answer to the nearest thousandth. Show Work

8. Write an exponential function for the graph.

includes (2, 45) and (0, 5).

7. Write an exponential function $y = ab^x$ for a graph that

7.____

In 12 & 13, Write the equation in logarithmic form.

14.	$2^{13} = 8,192$	14
15.	$125^{\frac{4}{3}} = 625$	15
16.	Write the equation $\log_{32} 8 = \frac{3}{5}$ in exponential form.	16
	In 15 - 17, Evaluate the logarithm. Show Work	
17.	log ₆ 36	17
18.	log ₃ 729	18
19.	$\log_4 \frac{1}{16}$	19

In 18, Graph the logarithmic equation.

In 19 & 20, Write the expression as a single logarithm.

21.	$3\log_{\theta}w + 6\log_{\theta}x$	21
22.	10g ₉ 80 – 10g ₉ 10	22

In 21 & 22, Expand the logarithmic expression.

23.	$\log_9 \frac{m}{6}$	23
24.	log ₈ 6c ⁵	24
25.	Solve $9^{6x} = 87$. Round to the nearest ten-thousandth. Show Work	25
26.	Solve $16^{5x} = 51$. Round to the nearest ten-thousandth. Show Work	26
27.	Solve $125^{9x-2} = 150$. Show Work	27
28.	Use the Change of Base Formula to evaluate $\log_4 21$.	28
29.	Solve $\log(9x + 2) = 3$. Show Work	29
30.	Solve $log(5x + 8) = 2$. Show Work	30
31.	Solve $3\log 2x = 4$. Round to the nearest ten-thousandth. <i>Show Work</i>	31
32.	Solve $\log 5x + \log 7 = 1$. Round to the nearest hundredth if necessary. Show Work	32
	In 29 & 30, Write the expression as a single natural logarithm.	
33.	$2\ln 5 + 4\ln b$	33
34.	$3\ln y - 6\ln b$	34
35.	Solve In $x = 0.2$	35

Show Work

36.	Solve $\ln(3x - 7) = 7$. Round to the nearest thousandth.	36
	Show Work	

37. Solve $\ln(4x+4) = 5$. Round to the nearest thousandth. *Show Work*

In 33, Use natural logarithms to solve the equation. Round to the nearest thousandth.

38. $e^{2x} = 1.4$ Show Work

39. The amount of money in an account with continuously compounded interest is given by the formula $A = Pe^{nt}$, where *P* is the principal, *r* is the annual interest rate, and *t* is the time in years. Calculate to the nearest hundredth of a year how long it takes for an amount of money to double if interest is compounded continuously at 2.7%. Round to the nearest tenth. *Show Work*

39._____

37._____

38._____

40. A company with loud machinery needs to cut its sound intensity to 53% of its original level. By how many decibels would the loudness be reduced? Use the formula $L = 10 \log \frac{I}{I_{o}}$. Round to the nearest hundredth.

Show Work

40._____