\qquad Date \qquad Hour \qquad

Linear versus Exponential card sort

Sort them by Linear, Exponential Growth, and Exponential Decay. There are 2 graphs, 2 tables, 2 function rules, and 2 real world situations for each type. *The graphs, tables, rules, and story problems are not related. For example, the rule $y=4 x-8$ will not have a matching table - you must decide if this rule is linear, exponential growth, or exponential decay.

Record answers here:

	Graphs	Tables	Rules	Story Problems
Linear				
Exponential Growth				
Exponential Decay				

Summary:

How do you determine if something is linear or exponential by the:
A. Graph \qquad
B. Table \qquad
C. Rule \qquad
D. Story problem (key words)

How do you determine if a situation is exponential growth or decay by the:
A. Graph \qquad
B. Table \qquad
C. Rule \qquad
D. Story problem (key words)

$y=4 x-\left.8\right|^{y} y=0.4(3.2)^{x}$

S	T		
The Martins bought a house for \$85,000. Assuming			
that the value of the house will appreciate at			
approximately 5\% per year, how much will the house			
be worth in 5 years?		\quad	Phil keeps his money in a piggy bank. He has $\$ 60$
:---			
now, and he is adding \$5 per week. How much			
money will he have in 7 weeks?			

Linear versus Exponential card sort

Sort them by Linear, Exponential Growth, and Exponential Decay. There are 2 graphs, 2 tables, 2 function rules, and 2 real world situations for each type. *The graphs, tables, rules, and story problems are not related. For example, the rule $y=4 x-8$ will not have a matching table - you must decide if this rule is linear, exponential growth, or exponential decay.

Record answers here:

	Graphs	Tables	Rules	Story Problems
Linear	B, C	G, L	M, R	T, V
Exponential Growth	D, F	H, J	N, P	S, W
Exponential Decay	A, E	I, K	O, Q	U, X

Summary:

How do you determine if something is linear or exponential by the:
E. Graph LINEAR: STRAIGHT LINE. EXP: CONTAINS AN ASYMPTOTE, GROWS/DECAYS QUICKLY
F. Table LINEAR: CONSTANT $1^{\text {ST }}$ DIFFERENCE. EXP: COMMON RATIO.
G. Function LINEAR: $\mathrm{Y}=\mathrm{MX}+\mathrm{B}$. EXP: $\mathrm{Y}=\mathrm{A}(\mathrm{B})^{\mathrm{X}}$
H. Story problem (key words) LINEAR: PER WEEK, EACH DAY... EXP: APPRECIATE, DEPRECIATE, HALFLIFE, TRIPLES...

How do you determine if a situation is exponential growth or decay by the:
A. Graph GROWTH: LOW LEFT TO HIGH RIGHT, DECAY: HIGH LEFT TO LOW RIGHT
B. Table GROWTH: DO THE Y-VALUES INCREASE OR DECREASE
C. Function GROWTH: IF $B>1$ DECAY: IF $0<B<1$
D. Story problem (key words) GROWTH: APPRECIATE, TRIPLE, DOUBLE, ETC. DECAY: DEPRECIATE, HALF-LIFE

