\qquad
Intro to Rational Functions
Date: \square
\qquad Graphing Calculator Activity

Exploring Vertical Asymptotes \& Roots

Exploration 1:

A. Consider $f(x)=x^{2}+x-6$ and $g(x)=x+2$. As accurately as possible, graph these functions on the given grids below. The window settings are given.

$$
f(x)=x^{2}+x-6
$$

$$
g(x)=x+2
$$

B. What are the roots/zeros of each function? Describe how you found them both graphically and algebraically. Hint: factor $f(x)$

$$
f(x)=x^{2}+x-6 \quad g(x)=x+2
$$

C. Use a graphing calculator to graph $h(x)=\frac{f(x)}{g(x)}$.

Be careful to put parentheses around the entire numerator and denominator.

Looking at the table of values...

$$
Y 1=(\quad) /(
$$

Where are the roots/zeros of $h(x)$?

Where is $h(x)$ undefined?
State the vertical asymptotes.

Write $h(x)$ in factored form:

$$
h(x)=\frac{f(x)}{g(x)}=
$$

D. Use a graphing calculator to graph $p(x)=\frac{g(x)}{f(x)}$.

Be careful to put parentheses around the entire numerator and denominator.

Looking at the table of values... $\quad \mathrm{Y} 1=(\mathrm{l}$
Where are the roots/zeros of $p(x)$?

Where is $p(x)$ undefined?
State the vertical asymptotes.

Write $p(x)$ in factored for : $\quad p(x)=\frac{g(x)}{f(x)}=$

Exploration 2:

A. Consider $f(x)=x^{2}-x-2$ and $g(x)=x^{2}+2 x-3$. As accurately as possible, graph these functions on the given grids below. The window settings are given.

B. What are the roots/zeros of each function? Describe how you found them both graphically and algebraically. Hint: factor $f(x)$

$$
f(x)=x^{2}-x-2 \quad g(x)=x^{2}+2 x-3
$$

C．Use a graphing calculator to graph $h(x)=\frac{f(x)}{g(x)}$ ．
Be careful to put parentheses around the entire numerator and denominator．

Looking at the table of values．．．

$$
Y 1=(
$$

）／（
Where are the roots／zeros of $h(x)$ ？

Where is $h(x)$ undefined？
State the vertical asymptotes．

Write $h(x)$ in factored form：

$$
h(x)=\frac{f(x)}{g(x)}=
$$

D．Use a graphing calculator to graph $p(x)=\frac{g(x)}{f(x)}$ ．
Be careful to put parentheses around the entire numerator and denominator．
Looking at the table of values．．．

$$
Y 1=(\quad) /(
$$

Where are the roots／zeros of $p(x)$ ？

Where is $p(x)$ undefined？
State the vertical asymptotes．

Write $p(x)$ in factored form：$\quad p(x)=\frac{g(x)}{f(x)}=\square$

Exploration 3：

A．Consider $f(x)=(x-3)(x+2)(x-1)$ and $g(x)=x-2$ ．As accurately as possible，graph these functions on the given grids below．The window settings are given．

WIVDID

$$
f(x)=(x-3)(x+2)(x-1) \quad g(x)=x-2
$$

B. What are the roots/zeros of each function? Describe how you found them both graphically and algebraically. Hint: factor $f(x)$
$f(x)=(x-3)(x+2)(x-1)$
$g(x)=x-2$
C. Use a graphing calculator to graph $h(x)=\frac{f(x)}{g(x)}$.

Be careful to put parentheses around the entire numerator and denominator.
Looking at the table of values... $\mathrm{Y} 1=[$
Where are the roots/zeros of $h(x)$?
\qquad
Where is $h(x)$ undefined?
State the vertical asymptotes.

Write $h(x)$ in factored form:

$$
h(x)=\frac{f(x)}{g(x)}=
$$

\qquad
D. Use a graphing calculator to graph $p(x)=\frac{g(x)}{f(x)}$.

Be careful to put parentheses around the entire numerator and denominator.

Looking at the table of values...

$$
Y 1=(\quad) /[
$$

Where are the roots/zeros of $p(x)$?

Where is $p(x)$ undefined?
State the vertical asymptotes.

Write $p(x)$ in factored form: $\quad p(x)=\frac{g(x)}{f(x)}=$

SUMMARY AND CONCLUSIONS about Rational Functions:

1. The roots of the factors in the numerator correspond with the \qquad on the graph.
2. The roots of the factors in the denominator correspond with where the function is undefined. This is where \qquad
\qquad occur.
3. Given the functions $f(x)=(x-a)(x+b)(x-c)$ and $g(x)=(x-d)(x+e)$
A. Where are the ROOTS of the function $h(x)=\frac{f(x)}{g(x)}$?
B. Where are the VERTICAL ASYMPOTES of $h(x)=\frac{f(x)}{g(x)}$?
C. Where are the ROOTS of the function $p(x)=\frac{g(x)}{f(x)}$?
D. Where are the VERTICAL ASYMPOTES of $p(x)=\frac{g(x)}{f(x)}$?
4. What type of functions were $f(x)$ and $g(x)$?
5. In all of the explorations above, $\mathrm{h}(\mathrm{x})$ and $\mathrm{p}(\mathrm{x})$ are called rational functions. Can you formulate a definition for a rational function?
6. For any simplified rational function, what information can you obtain from the numerator?
7. What information can you obtain from the denominator?
