Algebra 2 Intro to Rational Functions Graphing Calculator Activity

Name:	 	_
Date:	Hour	

Exploring Vertical Asymptotes & Roots

Exploration 1:

A. Consider $f(x) = x^2 + x - 6$ and g(x) = x + 2. As accurately as possible, graph these functions on the given grids below. The window settings are given.

B. What are the roots/zeros of each function? Describe how you found them both graphically and algebraically. *Hint: factor f(x)*

$$f(x) = x^2 + x - 6$$
 $g(x) = x + 2$

C. Use a graphing calculator to graph $h(x) = \frac{f(x)}{g(x)}$. Be careful to put parentheses around the entire numerator and denominator.

Write h(x) in factored form:

$$h(x) = \frac{f(x)}{g(x)} = -$$

D. Use a graphing calculator to graph $p(x) = \frac{g(x)}{f(x)}$. Be careful to put parentheses around the entire numerator and denominator.

Exploration 2:

A. Consider $f(x) = x^2 - x - 2$ and $g(x) = x^2 + 2x - 3$. As accurately as possible, graph these functions on the given grids below. The window settings are given.

B. What are the roots/zeros of each function? Describe how you found them both graphically and algebraically. *Hint: factor* f(x)

$$f(x) = x^2 - x - 2$$
 $g(x) = x^2 + 2x - 3$

C. Use a graphing calculator to graph $h(x) = \frac{f(x)}{g(x)}$. Be careful to put parentheses around the entire numerator and denominator.

A. Consider f(x) = (x - 3)(x + 2)(x - 1) and g(x) = x - 2. As accurately as possible, graph these functions on the given grids below. The window settings are given.

B. What are the roots/zeros of each function? Describe how you found them both graphically and algebraically. *Hint: factor f(x)*

f(x) = (x - 3)(x + 2)(x - 1)

$$g(x) = x - 2$$

1

C. Use a graphing calculator to graph $h(x) = \frac{f(x)}{g(x)}$.

Be careful to put parentheses around the entire numerator and denominator.

Looking at the table of values	Y 1 = ()/L	
Where are the roots/zeros of $p(x)$?		
Where is $p(x)$ undefined? State the vertical asymptotes.		<u></u>	
Write $p(x)$ in factored form:	$p(x) = \frac{g(x)}{f(x)} = -$		

SUMMARY AND CONCLUSIONS about Rational Functions:

- The roots of the factors in the denominator correspond with where the function is undefined. This is where ______ occur.
- **3.** Given the functions f(x) = (x a)(x + b)(x c) and g(x) = (x d)(x + e)
 - A. Where are the ROOTS of the function $h(x) = \frac{f(x)}{g(x)}$?
 - B. Where are the VERTICAL ASYMPOTES of $h(x) = \frac{f(x)}{g(x)}$?
 - C. Where are the ROOTS of the function $p(x) = \frac{g(x)}{f(x)}$?
 - D. Where are the VERTICAL ASYMPOTES of $p(x) = \frac{g(x)}{f(x)}$?
- **4.** What type of functions were f(x) and g(x)?
- **5.** In all of the explorations above, h(x) and p(x) are called *rational functions*. Can you formulate a definition for a rational function?
- 6. For any simplified rational function, what information can you obtain from the numerator?
- 7. What information can you obtain from the denominator?