Algebra II Review 8.1 – 8.3

In problems 1 - 4, evaluate each function to the nearest hundredth for x = -2, -1, 0, 1, and 2. Graph each function.

1. $y = 2(0.3)^{x}$ **2.** $y = \frac{2}{3}(3)^{x}$ **3.** $y = 2\left(\frac{1}{5}\right)^{x}$ **4.** $y = \frac{1}{4}(2)^{x}$

5. A new car that sells for \$18,000 depreciates 25% each year. Write a function that models the value of the car. Find the value of the car after 4 yr.

6. The price of a new home is \$126,000 and appreciates 2% each year. Write a function that models the value of the home. Find the value of the home after 10 yr.

7. The bear population increases at a rate of 2% per year. There are 1573 bear this year. Write a function that models the bear population. How many bears will there be in 10 yr?

8. A tree 3 ft tall grows 8% each year. Write a function that models the height of the tree. How tall will the tree be at the end of 14 yr? Round your answer to the nearest hundredth.

In problems 9 – 12, write an exponential function $y = ab^x$ for a graph that includes the given points.

9. (0, 2), (1, 1.3)	10. (-1, 12.5), (4, 4.096)	
11. (1, -8), (2, -32)	12. (2, 6400), (4, 4096)	

In 13 and 14, Find the amount in a continuously compounded account for the given conditions:

13. Principal: \$5000	14. Principal: \$20,000
Annual interest: 6.9%	Annual Interest: 3.75%
Time: 30 yr	Time: 2 yr

15. HG-197 is used in kidney scans. It has a half-life of 64.128 h. Write the exponential decay function for a 12-mg sample. Find the amount remaining after 72 h.

16. I-123 is used in thyroid scans. It has a half-life of 13.2 h. Write the exponential decay function for a 45-mg sample. Find the amount remaining after 5 h.

17. Suppose you invest \$5000 at an annul interest of 6.9%, compounded monthly.

- a. How much will you have in the account after 10 years?
- **b.** Determine how much more you would have if the interest were compounded continuously.

18. Suppose you invest \$8,400 at an annual interest of 4.5%, compounded quarterly.

- **a.** How much will you have in the account after 10 years?
- **b.** Determine how much more you would have if the interest were compounded continuously.

In problems 19 – 21, write each equation in exponential form.

19. $\log_4 256 = 4$	20. $\log_5 125 = 3$	21. $\log_{17}289 = 2$
105-200	200 1085120 0	

In problems 22 – 24, write each equation in logarithmic form.

22. $9^2 = 81$ **23.** $5^4 = 625$ **24.** $6^{-3} = \frac{1}{216}$

In problems 20 – 25, evaluate each logarithm.

- **25.** log₂16 **26.** log₂8
- **27.** $\log_2 \frac{1}{8}$ **28.** $\log_{11} 121$

29.
$$\log 100,000$$
 30. $\log_{\frac{1}{4}} 32$

In 31 and 32, graph the following.

$y = log_2 x$	32. $y = lo$	g ₃ x
	•	-
	$y = log_2 x$	$y = \log_2 x$ 32. $y = \log_2 x$