\qquad Date: \qquad Hour: \qquad

Algebra II Review 8.1 - 8.3

In problems $1 \mathbf{- 4}$, evaluate each function to the nearest hundredth for $x=-2,-1,0,1$, and 2 . Graph each function.

1. $y=2(0.3)^{x}$
2. $\mathrm{y}=\frac{2}{3}(3)^{\mathrm{x}}$
3. $y=2\left(\frac{1}{5}\right)^{x}$
4. $\mathrm{y}=\frac{1}{4}(2)^{\mathrm{x}}$
5. A new car that sells for $\$ 18,000$ depreciates 25% each year. Write a function that models the value of the car. Find the value of the car after 4 yr .
6. The price of a new home is $\$ 126,000$ and appreciates 2% each year. Write a function that models the value of the home. Find the value of the home after 10 yr.
7. The bear population increases at a rate of 2% per year. There are 1573 bear this year. Write a function that models the bear population. How many bears will there be in 10 yr ?
8. A tree 3 ft tall grows 8% each year. Write a function that models the height of the tree. How tall will the tree be at the end of 14 yr ? Round your answer to the nearest hundredth.

In problems 9 -12, write an exponential function $y=a^{x}$ for a graph that includes the given points.
9. $(0,2),(1,1.3)$
10. $(-1,12.5),(4,4.096)$
11. $(1,-8),(2,-32)$
12. $(2,6400),(4,4096)$

In 13 and 14, Find the amount in a continuously compounded account for the given conditions:

13. Principal: $\$ 5000$

Annual interest: 6.9\%
Time: 30 yr
14. Principal: $\$ 20,000$

Annual Interest: 3.75\%
Time: 2 yr
15. HG-197 is used in kidney scans. It has a half-life of 64.128 h . Write the exponential decay function for a $12-\mathrm{mg}$ sample. Find the amount remaining after 72 h .
16. I-123 is used in thyroid scans. It has a half-life of 13.2 h . Write the exponential decay function for a $45-\mathrm{mg}$ sample. Find the amount remaining after 5 h .
17. Suppose you invest $\$ 5000$ at an annul interest of 6.9%, compounded monthly.
a. How much will you have in the account after 10 years?
b. Determine how much more you would have if the interest were compounded continuously.
18. Suppose you invest $\$ 8,400$ at an annual interest of 4.5%, compounded quarterly.
a. How much will you have in the account after 10 years?
b. Determine how much more you would have if the interest were compounded continuously.

In problems 19 - 21, write each equation in exponential form.
19. $\log _{4} 256=4$
20. $\log _{5} 125=3$
21. $\log _{17} 289=2$

In problems 22 - 24, write each equation in logarithmic form.
22. $9^{2}=81$
23. $5^{4}=625$
24. $6^{-3}=\frac{1}{216}$

In problems 20 - 25, evaluate each logarithm.

25. $\log _{2} 16$
26. $\log _{2} 8$
27. $\log _{2} \frac{1}{8}$
28. $\log _{11} 121$
29. $\log 100,000$
30. $\log _{\frac{1}{4}} 32$

In 31 and 32, graph the following.
31. $\mathrm{y}=\log _{2} \mathrm{x}$
32. $y=\log _{3} x$

